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E N T R O P Y  A N A L Y S I S  O F  F I L T R A T I O N  F L O W S  

I. M. Ametov UDC 622.276 

The author discusses the possibilities of studying filtration processes on the basis of an analysis of the entropy 

growth rate in the system in accordance with Prigogine' s principle of minimum entropy production. Results 

of a study of the process of displacement of a liquid in a porous medium, the effect of surfactant additions 

on the process of displacement and isothermal flows, and the effect of natural magnetic fields on the char- 

acteristics of filtration flows are given. 

Introduction. Analysis of the equation of entropy balance [1, 2 ] provides important information in studies 
of liquid and gas flows in porous media. It has special importance in considering multiphase flows with phase 

conversions, surface effects, etc. [2 ]. Use of the formalism of nonequilibrium thermodynamics has substantially 

expanded the types of filtration processes considered, in particular, it has made it possible to study flows 
accompanied by nonequilibrium phase conversions and relaxation phenomena. The main disadvantage of the 
approach to investigation of filtration flows is that local characteristics are mainly used. At the same time, 

consideration of flows in porous media at the global level, using integral characteristics, provides qualitatively new 
results. Here, additional possibilities for controlling filtration processes appear, which is of direct practical 

importance. 
Prigogine formulated the principle of minimum entropy production under steady-state boundary conditions 

[3, 4 ]. According to this principle, the time evolution of a system occurs in such a way that as a whole the total 

entropy production tends to decrease and reaches a minimum in the steady state of the dissipative system. In what 
follows, some basic types of filtration flows are analyzed on the basis of this principle. In order to obtain qualitative 

results, all considerations are conducted within the simplest schemes, which, however, illustrate general properties. 
1. Basic Equations.  In what  follows, in the de r iva t ion  of the  basic  equa t ions  use  is made  of 

phenomenological relations of irreversible thermodynamics. The rate of local entropy production is equal to [3 ] 

T--~=dS ~ X i I i . (1) 
i=1 

In considering filtration flows in an isotropic bed, assuming the validity of the Darcy law, it is possible to set [5, 

6] 

x = - v e ,  (2) /* 

Isothermal flows will be considered. From Eqs. (1) and (2) we find 

dS f g iVPi 2 = 7 d r .  (3) 

Consider the process of displacement of one liquid (oil) by another (water, an aqueous solution) in a 

porous medium within the plug model. The filtration region G and the outer boundary F are divided into two 
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parts: G = GI + G2; F = F 1 + /'2, where the subscripts I and 2 refer  to the displacing and displaced liquids, 

respectively. The  interface between the liquids (the displacement front) is denoted by F o. The  volumes of the 

regions G1 and (72 are equal to Vl and 1/2, respectively. 

Proceeding from relation (3), for the entropy production rate in the region G we have 

dS dS 1 dS 2 K K 
r - -~-  = T - - - ~  + r - - -~-  = VJ'l IVPI 2 dv + v2f-~ IVPI 2 dv > O. 

Transforming the volume integrals into surface integrals in the above relation and taking into account that  

the integral along F0 vanishes due to the continuity of pressure and filtration velocity, we obtain 

f l  OP 12 K p OP dS K _ f K PAPdg + f K p -~n dl + ~ ~n d l .  (4) 
T d---~ = -- -~1 PAPdg G2t t2  FItt t  

In view of the fact that the pressure distribution obeys the piezoconductivity equation and  the integrals 

along FI and F2 are  equal to the injection and suction rates, instead of (4) we write 

T dS _ f mf l lp  OP OP 
dt "07 dg - f mfl2p + -- = ~ dg Plql P2q2 �9 

G 1 G 2 
(5) 

In the derivation of relation (5) it was assumed that the pressures along the boundaries Fl and  F 2 are  

constant  and equal to Pl and P2, respectively. Considerat ion of a more general  situation in which, for example,  the 

pressures at the contours of the wells are constant but different from each other  does not introduce complications. 

In this case for an isolated bed,  instead of (5) we have 

T dS _ f mfl lp OP OP n m 
d----{ = - ~  dg - f mflzP --~ dg + ~ Pliqli - ~ P2iq2i, 

G 1 G 2 i=1 i=1 

where Pli, P2i, qli, q2i are the pressures and discharges at the delivery and production contours (wells); n, m are  

the numbers  of delivery and production contours (wells). 

Instead of a l inear filtration law, a more general case can be considered in which filtration of liquids 1 and  

2 is described by nonl inear  laws of the form 

"UI = --  091 ( I V P I )  V P ,  "O2 = --  ~ 2  ( I v P I )  v p -  (6) 

In this case only relations (2) are changed and instead of (4) we have 

dS 
a--~ = - f P div (q~l (I VPI )  VP) dg - f P div (q~2 ( I VPI ) VP) dg + 

G 1 G 2 

+ f e f D l  (IVPI) ON oe dZ + f (IVPI) dZ. 
F 1 F 2 

(4a) 

Relat ion (5) remains unchanged.  Thus ,  the expression for the rate of change of ent ropy in the sys tem takes 

the form of (5), irrespective of the form of the filtration law. 

Similar relations are obtained if the model of plug displacement is rejected and two-phase f i l t rat ion is 

considered. Repeat ing the preceding discourse, we can easily calculate the entropy growth rate for the present  case: 

aS (o) Kz (a)] VpIZ 
T =yK + j l dr>__0. (7) 
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The volume integral is transformed into a surface integral: 

T dt - fPdiVv K ~ r + /~2 ) V d g +  

K 2 (a)] OP 

In considering two-phase filtration, the compressibility of the liquids is usually neglected in comparison 

with the change in the saturation, i.e., the liquids are assumed incompressible [6 ]. In this case, due to the continuity 

equation, the volume integral in (8) is zero and we have 

dS [K,  (o') K 2 (o')] OP 
T--d-i= ~ KP [ t~l + I~2 J -~n dl" (9) 

If we take into consideration that the filtration is unsteady,  we should proceed from Eq. (5). Using average 

values, instead of (5) we write 

, V,o &V2o Jp] 
T dt - 2 dt ~ d~- + qlPl - q2P2. 

dS  

It follows from the above relation that in the case of increasing bed pressure, the entropy growth rate decreases, 

and vice versa. Thus,  changes in the elastic energy of the oil pool are directly related to changes in the entropy 

growth rate. It follows from this reasoning that an increase in the pressure, including a local increase, for example, 

by stopping some of the production wells, causes a change in the filtration flows, redistribution of saturat ion,  and 

a subsequent  increase in the discharge of the wells. This fact is well known in practice and  is a basis of 

hydrodynamic  methods of increasing oil recovery [7 ]. 
2. Stability of Displacement in a Porous Medium. It is known that displacement of liquids in a porous 

medium is an unstable process, and within the scheme considered the condition of instability has the form/~ = 

/~2//zl > 1 [6 ]. In the case of unstable displacement, "finger formation" takes place and the process is fractal. 

We find the relation between the entropy growth rate and  the condition of stability of displacement. The 

process is assumed to be quasisteady. In this case OP/Ot = 0 should be assumed in (5). Moreover, due to the 

condition AP = 0 and accordingly f (K/I~)APdg = f (K/t~)(OP/On)dl -- 0 we have ql = q2 = q. In sum, Eq. (5) is 

transformed to the form G r 

as (1o) 
7"--d7 = q ( &  - p z ) .  

that 

First, we consider the case of one-dimensional plug displacement. Following [8 ], it can easily be obtained 

dS = aq2 
dt [0  - l)  ,u + 71, (11) 

where a =I~ IL /KT ,  7(t) = l(t) / L, /z =/~t//~ 2. 
From (11) we obtain 

a2- s = aq 2 ( l  - d / .  

dt 2 dt 

Since d l / d t  > O, the sign of d 2 S / d t  2 is determined by the value of/~: a t /z  > 1, the function S(t)  is convex and 
d 2 S / d t  2 < O; at/z < 1, the function S(t) is concave and d 2 S / d t  2 > O. Hence, it follows that when the displacement 
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front loses stability and fractal structures are formed, the entropy growth rate increases. With the model considered 

the conditions d 2 S / d t  2 < O, d 2 S / d t  2 >_ 0 coincide with the condi t ions/ ,  > 1,/~ < 1. If the quanti ty d S o / d t  = aq 2, 

equal to the ent ropy growth rate in the region of water filtration with the same flow rate q, is introduced,  for the 

relative entropy growth rate we have 

as/dSo 
- d - i ~  --d-i- = (I - -0 + 7 .  ( 12 )  

The  relations presented can be extended qualitatively to the case of non-one-dimensional  filtration. The  

average pressure in the bed is taken to be ft. Equation (10) is rewrit ten in the form 

T - - ~ - =  q (p l  - P  + p - P 2 )  = q + = K q  (11 +kt/2) �9 

H e r e / l ( t ) ,  12(t) are some characteristic dimensions of the water and oil regions, d l l / d t  >-- 0, d l2 /d t  <- O. Just as 

in the one-dimensional  case, assuming T ( d S o / d t )  = ~l / IOq21o,  where l 0 is the characterist ic dimension of the 

filtration region, we obtain 

m 

as as/aSo = 7, + it---;- 6.2 (13) 
dt - dt / ~ ' 10 " 

The  derivative of expression (13) is dx-S/dt 2 = d ~ / d t  + i~ (d~ /d t ) .  Since d l t / d t  >- 0, d l z / d t  < 0, the sign 

of d 2 S / d t  2 changes from minus to plus as the pa ramete r / t  increases. It follows from relations (12) and (13) that  

the en t ropy growth rate is a l inear function of the p a r am e te r / , .  Hence,  it can be concluded that  the "finger 

formation" that  occurs in the displacement results in an increase in the entropy growth rate. It is evident that  this 

is accompanied by a change in the structure of the filtration flow that is expressed in more frequent  a l ternat ion of 

water and oil regions. Similar reasoning is also valid for a two-phase flow. This follows from the fact that  relat ion 

(9) is t r ans fo rmed  to the form of (11) T ( d S / d t )  = Q(pl - p 2 ) ,  where Q is the rate of water  injection; Q = 

QI + Q2, QI.2 are  the rates of water and oil intake, respectively. 

3. Effect  of  Active Additions on the Process  of Displacement. To improve the process of displacement in 

a porous medium,  surfactants are added to the displacing liquid (water) to decrease the capillary pressure at the 

interface. When the capillary jump in the pressure between the phases is taken into considerat ion,  an addi t ional  

term appears in Eqs. (5) and (11) in Eqs. (5) and (11) that is caused by the inequality of the pressures along the 

common part of the boundary  F0 and is equal to qoPc, where q0 is the liquid flow rate through the boundary  F 0. 

In the quasis teady approximation considered,  q = qo- Thus,  instead of (11) we have 

a s  2 1 (14) 
at - aq l ( l  - 1 ) / ~  + 7 1 - - ~ q P c .  

The  minus sign in front of the second term in (14) corresponds to a hydrophil ic porous medium. For  a hydrophobic  

medium the sign is plus. 

Several general  conclusions follow from (14). When surfactants are added to injected water,  Pc decreases ,  

which results in an increase in dS /d t .  However,  here  the viscosity of the displacing agent  increases,  which results  

in a decrease in the parameter /a ,  in particular, due to formation of an emulsion. As a result, d S / d t  decreases.  

Hence,  it follows that optimum concentrat ions of surfactants and conditions of displacement are possible as regards  

minimization of the entropy growth rate. Indeed,  if the concentration of the reagent is denoted  by c, we have from 

(14) 

d ( d S )  dkt q d P  c 
a---c ~ = aq2 (1 - 7 )  dc T dc " (15) 
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TABLE 1. Results of Determination of the Permeability of Samples from the Koshilsk and Mamontovo Oil Fields 

Direction 
of filtration 

Sample 
No. 

Gas permeability, 

10 -12 cm 2, in the 

direction 

direct 

2.77 

2.86 

2.82 

3.21 

27 West-east 

27 North-south 

30 West-east 

30 North-south 

1 West-east 

1 North-south 

337.7 

281.0 

reverse 

2.79 

2.83 

2.86 

3.08 

342.6 

247.4 

Water permeability, 

10 -12 cm 2, in the 

direction 

direct 

0.46 

0.41 

0.49 

0.35 

59.6 

23.5 

reverse 

0.46 

0.43 

0.48 

0.38 

60.9 

24.9 

Average 
increase in 
the water 

permeability 

1.14 

1.55 

2.04 

Oil field 

Koshilsk 

Mamontovo 

The relations d21~/dc 2 < 0, d2pc /dc  2 >- 0, i.e., ( d 2 /d c  2) ( d S / d t )  <_ O, are usually valid. Then, from (15) 

we find the optimum concentration co from the known relations/,(c) and Pc(c). It should be noted tha t / ,  and Pc 

depend, in turn, on the water saturation of the porous medium. Therefore, the efficiency of using solutions of 

surfactants can depend on the instantaneous water supply. This conclusion is confirmed by experimental results 

of [9 ]. A more rigorous analysis requires inclusion of adsorption, diffusion, and other transfer processes. 

4. Thermal Methods. A similar procedure can be used for analysis of the thermal action on the bed. Here, 

we restrict ourselves to brief qualitative reasoning. In the general case, a term is added to the right-hand side of 

(5) that is proportional to [VTI 2. Here d S / d t  increases. However, as the temperature increases, the parameter/~ 

decreases, which results in a decrease in dS /d t .  Consequently, under these conditions, optimum heating is also 

possible. 
5. Effect of Natural Magnetization of the Porous Medium. In accordance with the laws of magnetic 

hydrodynamics, in a flow of a conducting liquid (water) in a magnetic field various effects connected with the 

interaction of the electric and magnetic fields appear. In filtration of liquids the natural magnetic and electric fields 

are weak. However, in view of the small size of the pore channels and the large specific surface of the porous 

medium, it should be expected that magnetohydrodynamic effects can substantially affect the characteristics of 

filtration flows. This is indicated by the experimental results reported below. 

Consider filtration of a homogeneous conducting liquid in the presence of an external magnetic field of 

strength H. It is known that recks have natural paleomagnetization. Therefore, in filtration of conducting liquids 

through real porous media electromagnetic phenomena that affect the characteristics of the flows appear. In the 

case of a liquid flow in an external magnetic field, the entropy production rate increases due the Joule effect. In 

the absence of an external electric field the contribution to the local rate of entropy production due to the Joule 

effect is o l  = c - 2 R - I T - I ( U  ~< H) 2 [5]. Substituting this expression into relation (5), we find 

7 

T dS _ f mf l lp  OP dv - f mfl2P dP dv + (VP • dv + qlPl - q2P2. 
dt  v I Ot v 2 Ot vl 

m 

It can be seen from the above relation that depending on the mutual orientation of the vectors U and H, 

the rate of local entropy production varies, reaching a maximum when these vectors are mutually perpendicular. 

Therefore, it should be expected that the direction of filtration of a liquid affects the apparent hydrodynamic 

resistance because of a change in the dissipative component caused by the Joule effect. 
It is of interest to compare these conclusions with experimental results on filtration of water through natural 

core samples of some oil fields obtained by the All-Russia Petroleum Research Institute [10 ]. Special measurements 

showed that the core samples used were homogeneous and isotropic, and under these conditions the penetration 

factor is a constant scalar. Table 1 contains permeabilities determined from measurements using a linear law of 

filtration. In the experiments mineralized water with a content of NaC1 of 30 g/liter was used. A special procedure 
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was used to determine the orientation of the main core sample relative to the direction of the meridian under natural 

conditions. Then, samples were cut out of this core in different directions and were subsequently used in the 

experiments. Average gas permeabilities in the "north-south" and "west-east" directions were determined from 

results of measurements. To eliminate the effect of possible errors in calculating the average increase in the water 

permeability, the latter was based on gas permeability determined in the same direction. As can be seen from Table 

1, the observed permeability in filtration in the "west-east" direction is substantially higher than that in the "north- 

south" direction. 

N O T A T I O N  

T, absolute temperature; S, entropy; I, generalized flow; X, generalized force; U, filtration velocity; P, 

pressure; F, viscosity; K, permeability; q, liquid discharge; m, porosity; fl, compressibility; Kl (or), K2(a) , relative 
phase permeabilities for water and oil, respectively; a, water saturation; L, distance between galleries; l(t), 
coordinate of the displacement front; Pc, capillary pressure in the porous medium; c, concentration of the surfactant 

in water; R, specific resistance of the liquid; H, magnetic-field strength; Q, rate of water injection; dr, volume 

element; dg, surface element. 
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